Apen informasjon / Public information

Elhub

Elhub Messaging Interface (EMIF)

Grants of rights and limitations

This product is the sole property of Statnett, and Statnett holds all intellectual property rights therein. You may download this product and use it. By Versjon 1.8 l 08.08.2019

doing so Statnett grants you, and you accept, a non-exclusive and non-transferable right to use the product internally in your organization. You may not
assign, sell, lend, lease or in any other way transfer any rights to this product to a third party. You may not copyright, patent or seek any protection
pertaining to the product, nor in any way convey the product as if it is your own. This product is delivered "as is". Statnett makes no warranty, either ta t nett

expressly or implied, of flawlessness, merchantability or fitness for a particular purpose.

Apen informasjon / Public information

elhub

Table of Contents

=B =N 1
A [0 o Yo [0 T Yo PRSP 2
D O -1 o T~ o Y- PSPPSR 3
N = Tol o T To] o -V PSPPSR 5
3.1 Y=o 0 [) 12O PPPTPROPPPP 5
3.2 (006] 49101 ¢=13Y (o] TP PPPPR SRR 5
N O T - B o JY=T o T SRR 7
D VB SIONING e 8
6 INEEEIAtION PatlerN . e 9
6.1 Y= AV (o=l DT ol § o { o] I PPNt 9
A Y1 0] o] [T o} 1 TR PPR 10
7.1 Request STart Of SUPPIY ...vee i e e 10
7.2 0] 1 o= 0PSRN 12
7.3 (00] 11Tt =T | D) - IR PPN 13
7.4 L0 LU =T o Nt 14
7.5 LV =1 1o =14 e o RS 16
8 Service Providers aNd ROIESueei ittt e e et e e e e ette e e e e bt e e e e ebteeeeerraeeeeanes 17
1o I o111 V= oo o s o - USSPt 20
10 1L DTl] o 4[] o TSRSt 21
0TS R = 170 Vo o T~ o PP PRPROt 21
11 RequUEst/ReSPONSE DESCIIPLIONS. .. .ccuiiieireeteeireerreesteestesveebeebeesbeesteesteessseesseeseesseessaesseesssenns 22
11,1 MarketProCesseSs.WSL........ceiuiiiiiiiiiiieie ettt ettt s e e st s bt e e sabe e sbeeesabeeenes 22
11.2 MeteringValuES.WSOI......cocuviiiiiiie et e et e e e bae e e e sbta e e s enteeeeennes 22
0 T O TV T=Y o VY VY | ST PRPOt 22
11.4 PoOlIMArketProcesseS.WSI.......ueiiieeiiiiiiieeiie sttt e e see e s e e seae e sate e sbeeesnaeeenes 22
11.5 PolIMeteringValues.WSdL........ccuiiii ittt e e e e tre e e e e bte e e e e ateeaeeanes 23
12 Message Transfer INTEIVAISooocuiiie e et e e e et e e e s bt e e e e e bae e e e sbaeeaeeanes 24
12,1 MArKEt PrOCESSES ...veeeuviiiirieiiteestee sttt ettt e sttt esiteesabeesbteesbaeessbeesabeesbeeesabeesssbeesasaessseesseeanes 24
12,2 QUETY ettt ettt ettt ettt e s bt s bttt e s bt e abe e s be e e hte e e bt e e hbe e e be e s bbe e s be e e hbeeaateesbaeenbaeene 24
12.3 IMELEING VAIUEBS ..eeeiieieee ettt ettt ettt e e et e e s st e e e e sbte e e e s baeeeesbaeeessstaeeesnteeaesnnes 24
12.4 Estimated Annual CoNSUMPLION......cccuiiii it e e etee e e e e bre e e e ebaeeeeenees 26
T o 1112V - PSPPI 26
7200 ST V] o T 1 o o g YN 28
12.7 Parallel SENAING Of IMESSAZESoeeieiiiieeeciiiee ettt e ettt e e et e e e et e e e e e ebteeeeebteeaeeaseeaeennes 28
13 g o]l o - T T 1170 Y- SRRt 29
T R @ 7 o - T L =Y T T [o SO 29
14 Message [dentifiCationocciiii i s et e e enes 31
15 XIMIL CONEENTES. ..t s et e e e s s s a e et e e s s e snnreeeeeeas 32
5 0t R (V= Yo 4 =TS o 1= [T RTRRTRON 32
T T o 11 T o =1 TS PRPROt 32

Elhub Messaging Interface (EMIF) @ Table of Contents

Apen informasjon / Public information

15.3
16
16.1
16.2
16.3
17
171
17.2
17.3
17.4
17.5
17.6
17.7
17.8
17.9
18

Y Yoo o 1o Y- PRSP 32
ETNUD DOWNTIME . ettt et e e st e e s s bt e e e s sbteeessbaaeessstaaessasseeessnnes 33
EMIF is Completely Unavailablecooiiiiiiiieeececce ettt 33
EMIF is Available, but Unable to Successfully Receive Messagesccccvveeeecveeeeecveeeeeennnen. 34
EMIF and Message Processing is Running, but Calculations/Jobs are Not Running............. 35
Appendix A - SOAPUI PACKAEZE.......uviei ittt e e et e e e ebae e e et ae e e e earae e e enreeas 36
Y =Tol U1 51 4V PPNt 36
=] oF 1= 1 4 (0] o F 3OO ST PP U PPTPPUPPTTN 36
Sample 1 - EINUD-MarketPrOCESSESuuiiiiciiiieiiiiiee ettt e et e e sarae e s ssnraeeesnes 39
Sample 2 - EIhub-MeteringValUEsoooviiiiiiiiiiee ettt sarae e 42
Sample 3 - EIhub-PolIMarketProCeSSESuuiiiiciiiiiiiiiiee ettt e e e s ssnrae e 44
Sample 4 - EIhub-PolIMeteringValUS..........eeeicuieei ettt 46
SaAMPIE 5 - EINUD-QUETY ...ttt ettt e e e e bte e e e e bte e e e erraeaeeanes 49
SAMPIE = WS-SECUILY .rvreeetiieeieitiiee ettt e et eeette e e et e e e e e tae e e eebteeeeebeeeeeebtseeeestaeeseastasananes 51
Connecting to the SoapUl Package using .Net.........cccviiiiciiii it 55
O TTT=7] o o] o TP PPPPTROPTPP 56

Elhub Messaging Interface (EMIF) @ Table of Contents

Apen informasjon / Public information

Figures

Figure 1 Asynchronous incoming mMessage PAtterNccueeeeecieeeeiiieee et eeree e e eee e e ree e e earee e e e eareeas 12
FIUIE 2 POIIING LiMING .. .eiiieiiiie ettt e e et e e e et be e e s et e e e s e attae e e s abaeeeensbaeesenseeesenrenas 13
Figure 3 Synchronous incoming Message PAtterNccccueeieeiieeecciiee e e e e e eabre e e 15
Figure 4 Service provider, INCOMINGcuuii e eesee e e ree e e s rae e e e abae e e e abeeessnsaeeeenneeas 17
Figure 5 Service provider, OULEOINEcc.vviiiiiiiiiciiee ettt e e e e ree e e s rae e e s sabae e e e abaeesenbaeeeeaneeas 18
Figure 6 Service provider, POIIING ... i e e e e e e e e e e s et ae e e e areeas 19
U O A o) [[T a Y o T <] o o TSRS 27

Elhub Messaging Interface (EMIF) e Figures Page 1

Apen informasjon / Public information

elhub

1 Introduction

This is a description of the Elhub Messaging Interface (EMIF). The audience of this document are
developers and architects of systems that are to integrate with Elhub. The purpose is to give an
understanding of the integration patterns of Elhub. Along with this document you will also find the
WSDLs for the Elhub integration, a SoapUl package (see Appendix) that demonstrates the integration
patterns and the BIM (Business Information Model) documentation that describes the different
business documents that are sent and received. In addition, the BRSs (Business Requirement
Specifications) will describe the processes. These are not included here.

Elhub Messaging Interface (EMIF) e Introduction Page 2

Apen informasjon / Public information

2 Change Log

elhub

Date

Version

30.06.2015

0.5

Removed message encryption. Will use transport encryption
Removed explicit gzip element and use transport compression
Added optional confirm message

Added physical sender to the message header

Added better filter options to the polling services

28.08.2015

1.0

Stricter rules for the timing of sending of metering values has been
added

Removed a duplicate entry of PortfolioOverview from the
PollMarketProcesses WSDL

Added support for WS-Security to the WSDLs

Changed description of requesting positive Acknowledgement to also
allow it for service requests

Changed description of what to do in case of transport failures with two
more options

Added comments regarding UUID

Removed the MoreValuesAvailable flag from the polling response.
General rephrasings

22.10.2015

11

BIM has been updated (see separate change log)

Changed Soap Faults to being signed

Corrected errors relating to signing in the SoapUl projects

Added more details regarding rules for sending frequency of metering
values

Added some information regarding how to connect to the SoapUI
package using .Net

CollectedData can now be returned from the metering value polling in
accordance with BRS-NO-311

Added information related to xml contents (namespaces, whitespaces,
content type)

05.02.2016

15

Using a common version number for several documents

BIM has been updated (see separate change log)

Added description of rules related to updates of estimated annual
consumption

Documentation regarding Security also describes that Soap Faults are
signed. The WSDL was updated in the previous release

Added comment that certificates used for signing must be of type non-
repudiation

Added information regarding certificates during test

Cardinality in the poll result is changed from 9999 to unbounded. This is
done to prevent memory issues when doing XSD validation in Java.
There will be no change to the amount of data returned

Hourly values for exchange points and production points are not limited
by the daily sending rule

Elhub Messaging Interface (EMIF) @ Change Log Page 3

Apen informasjon / Public information

elhub

Date Version|Change
31.05.2016|1.6 e Added warning related to parallel sending of messages
13.01.2017|1.7 e Detailed polling frequency rules
e Added support for negative Acknowledgement from grid owner for
meter indexes received from a balance supplier
e New namespaces. All namespaces change from *:v1 to *:v2
e Added description of principles for future version changes
e Added new Soap Fault code to indicate the message was rejected due
to date restrictions
e Changed phrasing to get rid of the word "should" as it is ambiguous
e Cleanups in the rules regarding sending interval data
e Cleanups regarding polling rules
e Added warning regarding repeated namespaces and pretty printing of
xml
08.08.2019(1.8 e Added description of error scenarios
e Added details regarding downtime
e Updated the change log for version 1.7 to not mention negative
Acknowledgement for estimated annual consumption as that was not
introduced

Elhub Messaging Interface (EMIF) @ Change Log Page 4

Apen informasjon / Public information

elhub

3 Technology

The Elhub Messaging Interface will be based on SOAP 1.1 web services and uses the following WS-*
technologies:

o WS-Security
e WS-Policy

Elhub will provide a set of WSDLs for the integration.

3.1 Security

Messages will be transport encrypted by HTTPS (TLS 1.2). In addition, certificates will be used to sign
the messages using WS-Security. The signing requires the use of an enterprise certificate with non-
repudiation. The enterprise certificate must be from an issuer trusted by Elhub and messages signed
using the enterprise certificate must contain the organization number of the sending market party
(the physical sender). Elhub expects to support Buypass and Commfides . We have provided two sets
with WSDLs where one set contains WS-Security and one does not (this is shown by the file names of
the WSDLs). There are support for both WSDL sets in the SoapUl package . The HTTPS encryption is
handled by Elhub with no need for any certificates for the market parties for this.

There will be no message encryption using WS-Security. Due to this, it is the responsibility of the
sender of the message to make sure it can only be sent to Elhub (or the Ediel portal for
testing/certification) by for example only adding the Elhub certificate to the truststore (Java) or by
having some other mechanisms in place to make sure connections only connect to Elhub. Accepting
self-signed or outdated certificates and connections without a certificate must be avoided.

Elhub's use of WS-Security is described using WS-Policy. If you cannot use WS-Policy, this is a textual
description of Elhub's use of WS-Security: AsymmetricBindingAssertion indicates to use asymmetric
encryption, where the requestor’s certificate (X509v3) must be used for signature. The InitiatorToken
field indicates that the request token must be an X509v3 token and that it must be included with all
request messages, while the RecipientToken field indicates that response token has to be X509v3 but
will not be included in any message. To identify the token, a keyldentifier will be used — specified by
MustSupportKeyRefldentitier field. Timestamp is also needed for inclusion to circumvent replay
attacks (see https://www.owasp.org/index.php/Web Services), and as such - by default - this is also
signed. The OnlySignEntireHeadersAndBody field dictates that only the entire header or body is
allowed to signed — to mitigate XML Signature wrapping. And lastly, we only dictate that the Body-
element of the SOAP Envelope needs to be signed — both for the request and for the response. This
also includes Soap Faults.

3.1.1 Certificates During Testing

When running tests towards Elhub, like for instance in system vendor trials, it is not necessary to use
production certificates from Buypass or Commfides. Both of these will issue test certificates and we
recommend using these instead.

3.2 Compression

Compression will be used to minimize the amount of data to send on potentially large data sets.
Compression will be used on the transport channel (HTTP). This will be standard HTTP compression.

Elhub Messaging Interface (EMIF) @ Technology Page 5

https://en.wikipedia.org/wiki/SOAP
https://en.wikipedia.org/wiki/Web_service
https://en.wikipedia.org/wiki/WS-Security
https://en.wikipedia.org/wiki/WS-Policy
https://en.wikipedia.org/wiki/Web_Services_Description_Language
https://en.wikipedia.org/wiki/HTTPS
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/WS-Security
https://www.buypass.no/
https://www.commfides.com/
https://www.ediel.no/Portal
https://www.owasp.org/index.php/Web_Services
https://www.buypass.no/
https://www.commfides.com/
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/HTTP_compression

Apen informasjon / Public information

elhub

Elhub will require compression on metering data messages and the client system must also support
compression for messages received from Elhub (result from the polling interfaces). Tests have shown
that compressing a metering value message can reduce the size of the message by 95%.

When sending compressed data, compress using GZIP. This means the following HTTP header must
be set: "Content-Encoding: gzip"

When sending polling messages, the following HTTP header must be set to allow Elhub to send the
return data compressed: "Accept-Encoding: gzip". It is allowed to add other compression schemes as
well on Accept-Encoding, but GZIP must be one of the supported ones.

Elhub Messaging Interface (EMIF) @ Technology Page 6

http://www.gzip.org/
https://en.wikipedia.org/wiki/List_of_HTTP_header_fields

Apen informasjon / Public information

elhub

4 Data to Send

The data transported using the web services will be data defined in the BIM. There will be some
additional SOAP packaging around the data.

Elhub Messaging Interface (EMIF) e Data to Send Page 7

Apen informasjon / Public information

elhub

5 Versioning

The WSDLs will be versioned in the namespace and the version will change when changes that break
the interface are added. The namespace used for this version of the specification end in v2.

In future changes to the specifications we will follow these principles:

e All changes in the interface will require a new namespace

e The different versions will have different endpoints

e Changes will be communicated well in advance of the changes

e Reason for changes will be serious errors in the interface or updates to functionality
requiring changes to the information and structure in the messages

e There will be a set date for the changeover that all market parties must respect

e Messages received in the old version will be processed with the rules of the old version and
response messages will be in the old version

e The systems must be prepared to poll on both the old and the new interface

e The transition window where there can be data for both versions is typically in the order of
magnitude of the longest period of time a business process can be in a waiting state

e Messages sent in before the time of the version change are to be sent in the old version

e Messages sent in after the time of the version change are to be sent in the new version with
the exception of polling messages which can still be sent in the old version

e The rules (and in particular the last two ones) might be adjusted for some version changes.
This will be done in cooperation with the market.

Elhub Messaging Interface (EMIF) @ Versioning Page 8

Apen informasjon / Public information

elhub

6 Integration Pattern

Elhub will use synchronous web services. The processing of the request will in most cases be done
asynchronously, but Elhub will send an http 200 to signal that the message was received in the SOAP
response.

The only messages that will be processed synchronously are some query requests where Elhub is to
give a response immediately.

For messages that are processed asynchronously, a separate polling service will return the result of
the processing. The same service will also return messages the market party is to receive due to
actions by other market parties and actions by Elhub. This means Elhub will not actively send a
message to any recipient.

6.1 Service Description

There is one WSDL for each of the services described below (as mentioned above, there are two sets
with WSDLs where one supports WS-Security and one does not. The WSDLs are otherwise identical).

e MarketProcesses: Asynchronous processing of all market processes doing updates in Elhub.
Examples are registering a change of balance supplier and updating of customer data.

e Query: Handles queries for data. There are three types of queries: Synchronous queries
where the result is to be returned immediately, asynchronous queries where the result will
be available within a short time on the polling interface and asynchronous queries that will
need manual processing and the result of these will be made available on the polling
interface at a later time. Examples are queries to be forwarded to the grid owners and
upfront validation of metering points.

e MeteringValues: Asynchronous processing of metering values. Examples are hourly values
and non-continuous values.

e PollMarketProcesses: Results from asynchronous processing and other data that the market
party is to receive. This interface returns everything not related to metering values. Examples
are rejections of supplier changes and notification of updated customer data.

e PollMeteringValues: Returns metering values the market party is to receive. This includes
both metering point values and aggregated values. In addition, information about rejected
metering values, reminders for metering values and rejections related to queries for
metering values are returned on this service.

With exception of the polling services, there will be one message in the WSDLs for each BIM type to
send. The naming convention used is <BIM type>Request. This means to send a start of supply, the
message to send is an RequestStartOfSupplyRequest message with a RequestStartOfSupply BIM type
inside it. To send an end of supply you send a RequestEndOfSupplyRequest. The only element inside
these types will be the BIM type. For the polling services, the result can be a message containing
several BIM types at the same time.

The production version of Elhub will use WSDLs with WS-Security. The WSDLs without WS-Security is
to make initial development easier.

Elhub Messaging Interface (EMIF) @ Integration Pattern Page 9

Apen informasjon / Public information

elhub

7 Examples of Use

7.1 Request Start of Supply

This request is used when a balance supplier is to start supplying a metering point.

When Elhub receives the request, a check of the message signing is done. If this fails, a SOAP Fault
will be returned. Next an XSD validation is done and if it fails, a SOAP Fault will be returned. If the
message passes both of these, a confirmation that the message was received is returned by an http
200. This does not mean that the change of supplier will be effectuated as the processing of Request
Start of Supply request is done asynchronously and may be rejected for functional reasons. If this
happens, a Reject Start of Supply message will be returned on the market processes polling service.

If there is some transport failure where the SOAP Response is not received by the sender, the sender
does not know if the message was received by Elhub or not as it in general will not know if the error
occurred before or after Elhub received the message. We see three ways of handling this situation
(Elhub does not utilize WS-ReliableMessaging):

e Send the same message once more with the same message id as the original message. If
Elhub received the original message and the problem occurred in the transport of the
response, Elhub will have received the same message twice and will reject the second
message due to duplicates by a SOAP Fault. It is up to the market party to detect these
situations. The duplicate error message can normally be ignored in this situation as the
sender knows the same message has been sent twice.

e Always ask for confirmation messages and by doing so you will know after some time if Elhub
received the original message or not. If no confirmation or rejection message is received
within a reasonable time, the original message is to be resent with a new message id. If no
confirmation message is requested and the message is resent in case of a transport failure,
the second message may be rejected with an error indicating a crossing process. The sender
will then not know if the conflict occurred due to it sending in the original message (the first
message was received) or because there is another process that gives the error. In this case
we risk Elhub and the sender to be out of sync so resending with a new message id without
having requested confirmation messages is not recommended. If a confirmation message
was requested, but not received within some time and the sender sent the message once
more with a new message id, but Elhub did in fact receive the original message, response
messages will eventually be sent for both of these messages. The sender will then either get
two rejections, two confirmations, or one confirmation and one rejection, and must based on
this figure out the net status. If there are more transport failures, more than two messages
may have been sent.

e The third option is to have no automatic handling of these error situations and instead log on
to the Elhub Web Portal to check statuses. This may include checking the status of the
metering point contract in case of a move out or by checking for initiated processes in case of
a future change of supplier. If the status indicates that the message was not received, it is to
be resent. In this case you can choose to use the original message id or a new one. There is
no guarantee that you will be able to figure out if the message was received or not with
100% accuracy.

Note: Before data are sent to Elhub, they must have been persisted in a state signaling they are to be
sent. When Elhub acknowledges it has received the data in the SOAP Response, the data must
change state to having been sent. This means that if the sender crashes, the sender will be able to
pick up the unsent message and resend it when it starts. If the sender did not persist the data before
sending the message, Elhub might have processed the request, but the sending system might not

Elhub Messaging Interface (EMIF) @ Examples of Use Page 10

https://en.wikipedia.org/wiki/XML_Schema_(W3C)
https://en.wikipedia.org/wiki/WS-ReliableMessaging

Apen informasjon / Public information

elhub

have any trace of sending the message and might also not have the correct state in the business
data.

After the message has been processed, any errors (rejections) will be made available on the polling
service. When polling, a number of messages of different types can be returned. Elhub will return
whatever messages are available (but not necessarily all) at the time of the polling and return no
messages if there are none. The data will be compressed using HTTP compression and the calling
system must support this. After the market party has persisted the received messages, an
Acknowledgement message referring to the polled data set must be sent back to Elhub on the polling
service to confirm that the messages has been received. If no acknowledgement is received within a
predefined timeout, the same data set will be returned again. This timeout has yet to be defined, but
we are thinking in the order of 30 minutes. It is not a requirement to have updated all business
objects based on the received polling result before acknowledging to Elhub. It is enough that the
polling result has been persisted and so the market party can guarantee that the data will be
processed.

It is optional to have a confirmation message returned when Elhub has finished processing the
request. It is specified in the message header if such a confirmation is wanted. It is recommended to
only request a confirmation if the designed business logic needs it to complete the processing of the
update. Also consider if it is necessary to build logic needing the positive confirmation as it is best for
Elhub to avoid having to send these messages. The positive confirmation is similar to the positive
APERAK in the current market. Messages in the MarketProcesses WSDL will support positive
confirmation (with the exception of BRS-NO-317). Metering values will never get any form of positive
confirmation. For queries, the query result is the positive confirmation, but for long running queries
(like service requests), it is possible to ask for the positive confirmation. The confirmation message
will be returned in the polling service.

The rejections in the polling result will contain the id of the message they have rejected. The sending
system must keep track of the id of the messages that have been sent in order to be able to correlate
the rejection with the message that sent the data and from that figure out which action has to be
taken on which data to remedy the error. The optional confirmation messages follow the same
pattern with a reference to the original message.

The sequence diagram below shows three different scenarios when sending synchronous messages
with asynchronous processing. The first is the normal scenario where the message is received, the
second shows a case with XSD validation error, the last shows the case when the sender does not
receive the SOAP Response and sends the same message for a second time with the same message id
in order to get the proper rejection (duplicate error) if the original message was received by Elhub (as
mentioned above, this is one of the three options to handle the transport failure. Another option is
to have requested a confirmation message and sending the same message with a new message id if it
seems like Elhub did not receive the original message. The third option is to send the message again
after having done a manual check in Elhub first and figuring out it was not received by Elhub).

Elhub Messaging Interface (EMIF) @ Examples of Use Page 11

Apen informasjon / Public information

elhub

sd EMIF - Sending -Asynchronous/
% «System»
‘Elhub
‘Market party :
(from EMIF)
Al R StartOfSuppl
equestStartofSu
[Message OK] g PeIY() L
‘Http 200
L
[Technical Error] RequestStartOfSupply()
Fault ‘
[No Response] RequestStartOfSupply() o
T
{Communication
Exception}
RequestStartOfSupply(sameldAsThePreviousMessage) ;
‘Http 200 J

Figure 1 Asynchronous incoming message pattern

7.2 Polling

As Elhub process messages asynchronously, it is recommended to run polling separated from the
transfer of data to Elhub. Below we can see that you first poll for data to get some data and then
send an Acknowledgement to confirm that the data has been received.

Four scenarios are shown for the polling case. In addition to these flows, there can also be SOAP
Faults returned for both the Polling and the Acknowledgement. First the normal case with a result set
is shown, here you have to acknowledge that the data has been received. Next is the case when
there are no data to return in the polling (the returned response object will be empty (NULL)), then
there is no acknowledgement. The third and fourth cases shows the cases when the sender does not
receive the response based on the sent input. In both cases, the sender is expected to send the
request again, but the message id must be different from the original in both cases (this is different
from sending in updates as described above). The id that is being acknowledged is to be the same as
in the original message in scenario four.

Every message must have a BRS identificator in it. Polling is not defined as a separate BRS, but as the
same type of header is used for polling messages as for other messages, a specific POLL BRS is
defined in the legal value definition to use when polling. The Document Type to specify in the polling
messages, both the initial poll and the later Acknowledgement, is 21 (list agency identifier 6).

Elhub Messaging Interface (EMIF) @ Examples of Use Page 12

Apen informasjon / Public information

elhub

The polling message will specify which role to retrieve data for. It is possible to choose to have
messages for all roles the market party has or only for a single role. It will not be possible to specify a
specific BRS in the polling to only poll data for that BRS.

sd EMIF - Polling J

% «Systemn
:Elhub

‘Market party

alt

[Normal Case With Polling Result] PollForData()

:Response(list of data)

Acknowledgement(idFromPollingResult)

‘Http 200

[Normal Case With No Data Returned When Palling] PoliForData()

‘Response(empty)

[No Reponse From Polling]

PollForData()

"o
‘ {Communication Exception} %

PollForData(newMessageld)

‘ResultDataSet

Acknowledgement(idFromPollingResult)

‘Http 200

[No Response From Acknowledgement]

PollForData()

‘ResultDataSet

Acknowledgement(idFromPollingResult)

-

{Communication Exception} %

Acknowledgement(newMessageld, idFromPollingResult) |

‘Http 200

Figure 2 Polling timing

7.3 CollectedData

Sending in metering values (CollectedData) follow the same pattern as "Request Start of Supply", but
uses different services for sending in the data and polling the data. Errors in metering data are sent in
Acknowledgement messages. Confirmations that the metering data has been processed will never be
sent even though the message format supports requesting it.

Elhub Messaging Interface (EMIF) @ Examples of Use Page 13

Apen informasjon / Public information

elhub

In a CollectedData message there is usually data for several metering points. The CollectedData
message as a whole has an id and each repeating metering point (payload) has a separate id. Some of
the metering values can be accepted and some rejected (one payload element is either rejected or
accepted, but one payload might be accepted and another rejected). A separate Acknowledgement
message is sent for each payload that is rejected. This acknowledgement message will contain
references to both the header of the original CollectedData message and also to the particular
payload that was rejected. This means one CollectedData message may result in more than one
Acknowledgement message from Elhub. If all the values were accepted, there will be no response
from Elhub.

Metering values sent in to Elhub must be compressed and the data received on the polling service
will be compressed (both by HTTP compression).

As metering values does not contain a state in the same way as the market processes, you can
resend the original message with a new message id in cases of transport failures, but this may lead to
duplicate updates in Elhub.

7.4 Query

Query messages (except for Request Upfront Metering Point Characteristics) will also follow the
asynchronous pattern described for "Request Start of Supply".

Of the query messages, only the service request messages (RequestToGridAccessProvider) will
support requesting confirmation message. The reason is that for the other queries, the result will
either be a rejection or the actual query result which will be made available at the same time as a
confirmation message would have been made available. For the service requests it may take a long
time to have a query result sent back. Due to this Elhub will support confirmation messages for the
service request messages.

The data will be made available on the polling service. If the query is related to metering values
(applies to the RequestDataFromElhubRequest message and depends on the specified query type),
the responses (including Acknowledgement) will be made available on the PolIMeteringValues
service. All other query related results will be returned in the PollIMarketProcesses service.

For queries that require manual processing from either Elhub operators or the grid owner (service
requests), there is no guarantee that there will ever be sent a response to the query. Also the
response to a service request may not come for several days so there is no use in resending the
query shortly after the initial query if no response is received. Please wait at least some days in order
to allow the recipient time to answer the request.

If there is some transport failure where the SOAP Response is not received by the sender, the same
integration pattern as for "Request Start of Supply" apply, but instead of having the option to check
for confirmation messages, the existence of a query result is to be checked instead in some situations
(as only service requests will support confirmation messages). As there is no state related to queries,
sending the original query with a new request id is also an option, but this may result in having
duplicate search results.

7.4.1 Request Upfront Metering Point Characteristics

This query request is used when a balance supplier wants to check the existence of a metering point
or find the metering points of a potential new customer.

The processing of Request Upfront Metering Point Characteristics will be done synchronously. When
Elhub receives the request, a check of the signing is done. If this fails, a SOAP Fault will be returned.
Next an XSD validation is done and if it fails, a SOAP Fault will be returned. If the message passes

Elhub Messaging Interface (EMIF) @ Examples of Use Page 14

Apen informasjon / Public information

elhub

both of these, Elhub will process the request and return the result of the request in a SOAP
Response. The result can be a negative response (negative Acknowledgement) or the requested data.
If there is some internal problem in Elhub that prevents the request from being processed within a
predefined timeout, an error will be returned (SOAP Fault). The sender must then retry the request
with a new message id at a later time. If there is some transport failure where the SOAP Response is
not received by the sender, the message must be sent again with a new message id (note that this
differs from the asynchronous case).

The sequence diagram below shows the four different scenarios when sending synchronous
messages. The first is the normal scenario where the message is received and the request is ok, the
second shows a technically correct message with functional errors (maybe the metering point does
not exist), the third shows a case with XSD validation error, the last shows the case when the sender
does not receive the SOAP Response and sends the same message for a second time, but with a new
message id in order to avoid getting a SOAP Fault if the original message was received by Elhub.

sd EMIF - Sending - Synchronous/

% «System»
:Elhub

‘Market party ‘

(from EMIF)
alt |
[Query OK] i RequestUpfrontMeteringPointCharacteristics() i
- ‘ResponseUpfrontMeteringPointCharacteristics ﬂ
[Query Error] i

RequestUpfrontMeteringPointCharacteristics()

:Acknowledgement ﬂ
< ,,

[Technical Error]

[No Response] RequestUpfrontMeteringPointCharacteristics()

Fxrentinnl
RequestUpfrontMeteringPointCharacteristics(differentidFromThePreviousMessage

-

{Communication ﬁ
)

| _____ResponseUpfrontMeteringPointCharacteristics

Figure 3 Synchronous incoming message pattern

Elhub Messaging Interface (EMIF) @ Examples of Use Page 15

Apen informasjon / Public information

elhub

7.5 Validation

Elhub expects senders of messages to do an XSD validation of the data sent to Elhub in order to
prevent Elhub from failing in the XSD validation. Elhub will still do an XSD validation.

Elhub Messaging Interface (EMIF) @ Examples of Use Page 16

Apen informasjon / Public information

elhub

8 Service providers and Roles

If a service provider acts on behalf of some other market party (grid owner A is owning the data, but
service provider B is sending the messages), the service provider will specify the id of the real market
party as the juridical sender in the header of the messages it sends on the messaging interface. The
id of the service provider will be specified as the physical sender (market parties that does not have a
service provider will specify its own id in both elements). The service provider will sign the message
using its own certificate (messages are always signed by the physical sender). Elhub will check that
the service provider is allowed to act on behalf of the specified market party in the specified role (it is
possible to have different service providers for different roles, but not a finer granularity like BRS). A
SOAP Fault will be returned if the service provider is not allowed to operate on behalf of the market

party.

stm EMIF - Service Provider Support - Incoming /

Find Market
Actor based on

A Is the
the signature ohysical
sender the
same as the
Does the juridical
signature Jsender Generated
match the error? Make the error
physical Process the Yes message

message

sender? avaiable to the

physical sender
of the message

Is the physical

sender a valid

Service Provider
No for the juridical

sender for this

role?

Finished

Error

Figure 4 Service provider, incoming

If Elhub rejected the message (after accepting it technically), the response message will be made
available to the physical sender of the original message.

When Elhub generates a message to a market party that is not a direct response to an incoming
message from the same market party (for example a NotifyEndOfSupply), it checks if the market
party has a service provider for the specific role and forwards the message to the service provider
(makes it available for polling by the service provider) if that is the case. The message header in the
returned message will specify the id of the real market party as the juridical recipient (there is no
physical recipient element).

Elhub Messaging Interface (EMIF) @ Service providers and Roles Page 17

Apen informasjon / Public information

elhub

stm EMIF - Service Provider Support - New Outgoing /
New
. message
ready to
be sent
(not
rejection
Does the message)
Market \/ " Makethe
Party Yes message
hav;- a available to the
Service Service Provider
Provider
for this No ~ o
role?
s / N
Make the Finished
message
available to the
Market Party
_ /

Figure 5 Service provider, outgoing

On the polling interface, the service provider is to specify its own id in the message header (both
physical and juridical). In the message payload there is an option to specify the market party to get
data for (along with the role). This allows the service provider to choose to get data belonging to
itself (if it operates both as a service provider and a market party), one of the market parties it serves
or all data that is available for it, regardless of market party (both itself and the market parties it
serves). The messages returned from Elhub in the polling interface will always identify the market
party owning the data in the message header. Similar options is also available to filter on the roles in
order to get data for a single role or all roles.

Elhub Messaging Interface (EMIF) @ Service providers and Roles Page 18

Apen informasjon / Public information

stm EMIF - Service Pr... /

Poll for
messages

 Findthe)

messages that

can be returned

to the sender of
the message

- ™

Filter out
message based
on market party

id and role

. /

Return the
messages

Finished

Figure 6 Service provider, polling

Elhub Messaging Interface (EMIF) @ Service providers and Roles Page 19

Apen informasjon / Public information

elhub

9 Polling Format

The polling message format is described in the BIM. The polling message will use the standard
Header and Process Context. The juridical sender and role in the header of the polling message are
not relevant, but are mandatory and must be specified. The payload part will specify the market
party and role to get data for. The market party id is only relevant for service providers (as described
above). The role is most relevant for service providers and grid owners. This allows the sender of the
message to specify that messages for all its roles are to be returned or only a single role. The valid
codes for roles and scheme/list identifiers are the same as the similar definitions in the header
structure as shown in the BIM.

The returned message from the polling will be a PollForDataResponse message. This message will
contain an identificator of the returned data set that is to be used when Acknowledging that the data
has been received and the returned messages. The returned message will have a size limited to a
number of MB and a number of messages. At the moment we are thinking of never returning more
than 100MB of uncompressed data. There will never be more than 9999 messages in a returned data
set, but some of these messages can be big (for example metering value messages). Also Elhub does
not guarantee to return all available messages in one polling.

The Acknowledgement message with status 39 (Accepted) is to be used when confirming the receipt
of the poll result by referring to the message returned from the polling.

Description of the poll response message (PollForDataResponse):

Element Description Data Type
name
Identification |ldentifier of the data set. Used as input in the uuIiD

Acknowledgement of the polling

ResultDataSet |The BIM messages returned in the polling List of BIM messages of
different types

All elements are mandatory, but the PollForDataResponse itself is optional (nillable="true" in the
XSD) as there does not have to be anything to return.

Elhub Messaging Interface (EMIF) @ Polling Format Page 20

Apen informasjon / Public information

elhub

10 File Descriptions

The files (WSDLs, XSDs and other documentation) will be stored in a folder representing the version
of the interface. The first production release will have version v1 and all versions up to the first
production release will also have version v1. Inside the version folder there are several folders:

e bim: Contains the XSDs for the BIM.

e example xmls: Contains examples xmls based on the BIM XSDs.

e wsdl: Contains the web service definitions. At the root of this folder you find the WSDLs and
the XSD sub folder contains data structures used by the WSDL to envelope the BIM
documents and to define non-BIM types like the polling messages. There are two sets of
WSDLs, one with support for WS-Security and one without (separated with name suffix).

e bindings: Contains optional binding files to use when generating code (currently only JAXB
binding files are included).

e soapui: Contains the different SoapUl projects.

e documentation: This document and the BIM description.

10.1 Binding Files

The main purpose of the binding files are to help JAXB to generate enumerations for XSD
enumerations with numeric values. The C# code generator does this by default. There is currently
one binding file available:

e jaxb_numeric.xml maps numeric enumerations to a textual representation. It does this by
prefixing the numeric value with "VALUE_". This means an enumeration with value 6 is
mapped to VALUE_6 and 89 is mapped to VALUE_89.

The mappings only apply to the generated code, the xml generated when serializing objects will still
be the same. You can change the binding file if you do not like the names. It is optional to use it.

To use the mapping file with wsimport use the "-b" switch and refer to the binding file.

Elhub Messaging Interface (EMIF) @ File Descriptions Page 21

https://en.wikipedia.org/wiki/Java_Architecture_for_XML_Binding
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)

Apen informasjon / Public information

elhub

11 Request/Response Descriptions

Below is a short description of the different WSDL files.

11.1 MarketProcesses.wsdl

As mentioned previously, the incoming message has the name <BIM type>Request. The response is
empty (http 200). The request will contain the corresponding BIM type. If the update is rejected, the
rejection message will be returned in PollMarketProcesses. If a positive acknowledgement is
requested, that will also be returned in PollMarketProcesses. The values can be sent compressed.

11.2 MeteringValues.wsdl

There are two messages in this file:

e The message is called CollectedDataRequest is used for sending metering values and contains
a CollectedData element from the BIM. The response will be empty (http 200). If the update
is rejected, the rejection message (negative Acknowledgement) will be returned in
PollMeteringValues. There will be one Acknowledgement for each payload (metering point)
that is rejected. The values must be sent compressed.

e AcknowledgeRequest uses the standard BIM Acknowledgement type. It is used to reject
meter indexes or estimated annual consumption received from the balance suppliers. Only
negative Acknowledgment messages are to be sent (PayloadResponseEvent must be 41). The
OriginalBusinessDocumentReference in the PayloadResponseEvent must refer to the
Identification in the header of the received CollectedData. The OriginalPayloadReference
must refer to the Identification of the payload to reject. If several payloads are to be
rejected, there must be one AcknowledgeRequest for each payload that is rejected.

11.3 Query.wsdl

The queries follow the same naming convention with <BIM type>Request. There is one synchronous
message with a response message called <BIM type>Response
(RequestUpfrontMeteringPointCharacteristicsResponse). The other queries are asynchronous and
will respond with an empty response (http 200).

The result of the asynchronous queries will be returned in PolIMarketProcesses except for queries for
metering values (applies to RequestDataFromElhubRequest and depends on the specified query
type) which will be returned in PollMeteringValues. Any acknowledgement message for an
asynchronous query will be returned in the same polling service as the expected data would have
been returned in. This also apply to positive Acknowledgement where applicable.

The values can be sent compressed.

11.4 PollMarketProcesses.wsdl

There are two messages in this file:

e PollForDataRequest uses the BIM type PollForData. The payload specifies which market party
and role to get data for. As mentioned previously, the BRS identificator is to be POLL. It will
return a set of messages that are available for retrieval based on the specified market party
and role. The result data will be a set of BIM types where there can be several different types

Elhub Messaging Interface (EMIF) @ Request/Response Descriptions Page 22

Apen informasjon / Public information

elhub

in a single response. In addition an id is returned for the data set. If there are no values to
return, the response object will be empty (NULL). Confirmation messages will be returned as
positive Acknowledgement message (status 39, Accepted) except for confirmation of Start
and End of Supply which have specific confirmation messages. The result values will be sent
compressed in a PollIForDataResponse message. The input request can be sent compressed.
Compression must be supported for the response.

e AcknowledgePollRequest uses the standard BIM Acknowledgement type. The
OriginalBusinessDocumentReference in the PayloadResponseEvent must refer to the id
returned in the top of the PollForDataResponse. The status type in PayloadResponseEvent
must be 39 (Accepted) as Elhub does not accept rejections of pollings. There will also be no
option for partial accept of the polling result. The reponse message is empty (http 200). The
request can be sent compressed.

11.5 PollMeteringValues.wsdl

The messages in this file are similar to those in PollIMarketProcesses.wsdl, but different data will be
returned.

Elhub Messaging Interface (EMIF) @ Request/Response Descriptions Page 23

Apen informasjon / Public information

elhub

12 Message Transfer Intervals

12.1 Market Processes

One message in the Market Processes interface relates to only one metering point for one specific
process. We encourage that these messages are sent as soon as practically possible instead of
bulking them up and sending a relatively large set of messages in close succession. This still does not
mean we discourage having a schedule that looks for messages to send as long as the interval
between each sending is not too long (at most a couple of hours). In theory messages can be sent as
often as you like on the MarketProcesses service. This does in particular apply to messages related to
start and end of supply. Only send messages for updates of master data and customer information
when there are changes to the data sent to Elhub, not when some other related data that is not sent
to Elhub is changed in the source system.

12.2 Query

The Query service can be used as often as needed, but as the result from the queries only benefit the
sender of the query, it must not be misused by querying for data untimely. This in particular applies
to query for metering values which is not allowed be used as part of a normal flow as there are
options to subscribe for metering values and have Elhub make new values available on the polling
service automatically.

12.3 Metering Values

Sending of metering values must be bulked. The CollectedData message supports sending values for
several metering points (9999) in the same message and also for more than one hour at a time
(9999).

12.3.1 Hourly Values

Elhub will require that all metering values for a consumption metering point channel for a day is sent
in the same message as of now, with the possibility of more frequent options in later versions of
Elhub. You are not allowed to send the hourly values as they come in to your systems, but must
buffer these and send them once the day is complete. Also the hourly values for a day for a metering
point channel must be grouped together in a single payload element in the CollectedData message,
not split on several payload elements. Note that this allows sending different channels for a metering
point in different messages, but you are also allowed to send all or several channels in a single
message.

A single CollectedData message must contain data for as many metering points as practically
possible. As metering values are collected after midnight for the preceding day (either all values for
the day or the last hour of the day), you can start sending the metering values for the metering
points that have been completed in bulks. You do not have to wait until all metering points have
been collected, but at the same time you are not allowed to send the metering points one by one.
The general rule is you must delay sending until you have metering values for at least 1000 metering
points and then send these in a single message (you are allowed to wait until you have metering
values for 9999 metering points). If the 07:00 limit for metering values is closing, you can send the
metering values in smaller batches in order to not risk sending them after the 07:00 limit. The reason
for doing so is when you fear the data will not be processed by Elhub by 07:00. There will be no hard
enforcing of these rules by rejecting small messages, but this will be monitored. In addition to this, in

Elhub Messaging Interface (EMIF) @ Message Transfer Intervals Page 24

Apen informasjon / Public information

elhub

the 00:00-07:00 interval you are allowed to send messages with fewer than 1000 metering points if it
is more than 1 hour since the last time a message was sent. That means you do not have to buffer
more than 1000 messages if it is more than 1 hour since the last sending of metering values and that
you can send fewer than 1000 metering points if it is more than 1 hour since the last sending of
metering values. Note that sending messages every hour on the hour are to be avoided as that would
give an unnatural peak.

The rules above also applies to corrections done outside the 00:00-07:00 period (07:00-00:00). These
messages are also be buffered and sent in bulks of 1000 metering points or more, but you are
allowed to send fewer than 1000 metering points in a message if it is more than 1 hour since the last
message. For corrections, you are allowed to send only the corrected hours, you do not have to send
the entire day. If there are several corrections for a single day, it is recommended that these are sent
in the same message. This also apply if there are corrections for two non-consecutive hours, these
are not be sent as two single hourly corrections, but as a single correction with at least all values in
the interval, but sending the entire day is also allowed.

For exchange points and larger production points, you are allowed, after agreement with Elhub, to
send metering values hourly, but the others rules regarding grouping of messages still apply. This
means you can handle exchange points and production points similar as described in the correction
scenario.

Note that these rules applies per combination of physical and juridical sender. This means a service
provider does not have to consider these rules across all market parties it is serving. It also means the
physical senders for a market party with more than one physical sender of metering values do not
have to consider these rules across the different physical senders. However a market party with
several head-end instances will have to look at the rules combined for all nodes as long as there is a
single physical sender of the metering values. This means the different head-end instances cannot
build messages independently of each other and must go through an MDM or similar.

As mentioned, the CollectedData message supports 9999 metering points with 9999 hourly values,
but Elhub will not support large amount of both metering points and hourly values in the same
message. If the number of metering points is high, the number of hourly values must be low.
Similarly, if you need to transfer a lot of hourly values for some metering points, the number of
metering points must be low. The general rule is to limit the total number of hourly values (summed
for all metering points) in one message to no more than 250 000. This means if you send hourly
values for a single day, you can send 9999 metering points, but if you want to increase the number
hourly values, the number of metering points must be lowered. Elhub will reject metering value
messages with more than 250 000 hourly values. The rules here may seem to conflict with the rule of
at least 1000 metering points per message, but that is not the case as the main rule can be translated
to sending at least 25 000 hourly values per message.

Metering values are to be sent in as early as possible with regard to the 07:00 (Central European
Time with daylight saving) limit and not delayed until close to 07:00. By starting the data collection
just after midnight and sticking to the rules described above, it is expected data to be sent to Elhub
before 07:00 with a good margin. Metering values not processed (received and stored) by Elhub
within 07:00 will not be included in the calculations. In order to make sure all metering values are
processed by Elhub, it is recommended that the large bulk of metering values have been sent by
05:00. Note that for the day of transition to daylight saving time (last Sunday in March), the period
for sending metering values will be 1 hour shorter than normal. This means your systems must be
able to finish all collection and sending of metering values in 6 hours. At this transition day, Elhub will
still need to receive the messages early enough to be able to process the message before 07:00 in
order to have the values included in the calculations.

Elhub Messaging Interface (EMIF) @ Message Transfer Intervals Page 25

Apen informasjon / Public information

elhub

12.3.2 Non-hourly Metering Values

Non-hourly metering values must have the same sending pattern as the hourly values with regard to
bulking metering points. These values are in no way limited to the 00:00-07:00 period. As hourly
metering values and non-hourly metering values belong to different BRSes, it is not possible to mix
these in a single message. The non-hourly metering points are also to be bulked into messages with
at least 1000 metering points in a single message and you will be allowed to send a message with
fewer metering points if it has been 1 hour or more since the last sending of a message with non-
hourly metering points (hourly and non-hourly messages are seen separately here so the 1 hour rule
runs independently, which means you can send two small messages per hour as long as they are for
different types of metering points).

12.4 Estimated Annual Consumption

Estimated annual consumption in BRS-NO-317 is to be grouped with the same rules as for non-hourly
metering values with at least 1000 metering points per message and the 1 hour rule.

12.5 Polling

You will not know when there will be data available on the polling services. The expectation is that
the outgoing messages from Elhub will not be needed immediately so continuous polling by sending
a new polling request immediately after the previous one ended will not be needed. This means a
more or less fixed polling schedule is recommended. The polling scheme will be like this (does not
show processing of the received data and acknowledgement as the important thing to show here is
the waiting scheme):

Elhub Messaging Interface (EMIF) @ Message Transfer Intervals Page 26

Apen informasjon / Public information

elhub

stm EMIF - Pouing/

Start
Polling

(Poll Elhub W
t)

Any Data
Returned?

Wait Minimum 1
Second

Wait Minumum 5 No
Seconds J

Yes

Large
Data Set

Returned’%
No Yes

Figure 7 Polling pattern

If no data or a small data set was returned, you must wait at least 5 seconds before polling
again (counting from the time the response was received).

If the response included a large dataset you are allowed to do a new polling after minimum a
1 second delay (counting from the time the response was received) as Elhub may have more
values. You are not required to do this. Elhub has configurable options for how many
messages to include in a polling result and how many MB will at most be returned. At the
moment these configurations are set to 1000 messages and 100MB. This means if you
received a dataset less than this, you are to wait for at least 5 seconds before polling again. If
you received this amount of data (either 1000 messages or close to 100MB in xml) you are
allowed to poll after minimum a 1 second delay. These message size limits can change.
Polling must be done at least once per hour in order to not have huge outgoing queues
building up. If the polling interval is too long you risk losing data. We have not defined how

Elhub Messaging Interface (EMIF) @ Message Transfer Intervals Page 27

Apen informasjon / Public information

elhub

long a period we guarantee to keep the messages, but it is expected to at least be a number
of days, but that is only to support downtime issues.

e Even though it is allowed to poll every 5 seconds, Elhub would appreciate if polling intervals
were longer. Polling every 5 seconds could be done when you are waiting for a query result,
but in other circumstances, longer wait periods would mean less stress on Elhub.

The waiting above is until you can query for the same market party and role. If the query is split into
qguerying per role, you are allowed to query for the next role immediately, but when all roles have
been polled, the waiting must be done.

Elhub has two polling interfaces and the polling rules are the same for both interfaces. You are not
required to synchronize polling on the two interfaces. This also means there is no requirement that
after polling on the market processes interface, you must wait 5 seconds before polling on the
metering values interface.

12.6 Monitoring

The message transfer rates will be monitored in order to detect any misuse of the interface. This will
in particular apply to the "Request Upfront Metering Point Characteristics" message (the
replacement of NUBIX).

12.7 Parallel Sending of Messages

Elhub supports receiving messages in parallel. This means is it possible to send in multiple messages
simultaneously, but for the same metering point we recommend not not to send messages in
parallel. The reason for this is in this case Elhub cannot guarantee processing the messages in the
expected order as Elhub may receive the second message before the first one. The recommendation
is to at least wait until the first message has been received by Elhub (http response received) before
sending the next message for the same metering point.

Elhub Messaging Interface (EMIF) @ Message Transfer Intervals Page 28

Apen informasjon / Public information

13

elhub

Error Handling

Messages sent to Elhub can be rejected. There are three main ways Elhub reject messages

Errors detected in the (synchronous) communication with Elhub will be rejected with a Soap
Fault. The different types of faults are described in the section below. The message will not
be handled by the asynchronous processing in this case.

Errors in the elements used in the message (for example an element that is optional in the
XSD, but is mandatory for a given BRS) is handled by the asynchronous processing. Such
errors will result in rejection messages which will be returned on the polling interfaces. These
validations are described in the document "Elhub BRS Prosesspesifikke Meldingsvalideringer"
(only available in Norwegian).

Business related errors (for example a metering point that does not exist) is handled by the
asynchronous processing. Such errors will result in rejection messages which will be returned
on the polling interfaces. These validations are described in the documents "Elhub BRS
Markedsprosesser" and "Elhub BRS Maleverdirapportering” (only available in Norwegian).

13.1 SOAP Fault Definition

When there is a technical error, a SOAP Fault will be returned. The SOAP Fault will have these

properties:
XML element Description Card |Max |Content
Length
faultcode Who made the mistake that resulted [1..1 http://schemas.xmlsoap.or
in the fault. Standard part of a SOAP g/soap/envelope/
Fault
soapenv:Client - The client made a
mistake
soapenv:Server - The server has en
error
faultstring Standard part of a SOAP Fault. 1.1 http://schemas.xmlsoap.or
Description of the fault. This element g/soap/envelope/
cannot be processed automatically.
CodeGroup The type of fault: 1..1 |Enume
ration

e XSD: The message failed the
XSD validation

e Compression: Message data
is not compressed or the
client does not accept to
receive compressed data

e Security: The message failed
in the signature check,
authorization etc.

e System: An internal error
caused Elhub to be unable to
process the request

Elhub Messaging Interface (EMIF) ® Error Handling Page 29

http://schemas.xmlsoap.org/soap/envelope/
http://schemas.xmlsoap.org/soap/envelope/
http://schemas.xmlsoap.org/soap/envelope/
http://schemas.xmlsoap.org/soap/envelope/

Apen informasjon / Public information

elhub

XML element

Description

Card

Max
Length

Content

UUID: The message ID is not
unique (has been received
previously)

Size: The XML is too big (in
MB). Currently only relevant
for CollectedData

Date: The message is not
allowed to be sent in at this
date (the BRS is not active at
the moment)

Other: Some other error
situation. Used to be able to
update with new validations
without having to update the
interface immediately.
"Other" is not intended for
long time use and a proper
code will, normally, be
introduced in the first
upcoming update of the
interface.

Description

Short description of the error. This
element cannot be processed
automatically.

1.1

A100

ExceptionDateTime

When the fault was created

1.1

YYYY-MM-DDTHH:MM:SSZ
or

YYYY-MM-
DDTHH:MM:SS[+-
1[HH:MM]

FaultText

Details of the fault like information
about the element that failed XSD

validation. This element cannot be
processed automatically.

0.1

A1000

Elhub Messaging Interface (EMIF) ® Error Handling

Page 30

Apen informasjon / Public information

elhub

14 Message Identification

As specified in the BIM, all message identifications are to be UUIDs. Note that these are to be real
UUIDs generated by standard UUID generators and not just a string that follows the UUID pattern.
We recommend using the version 4 (random) of UUID generation, but this is not a requirement.

In the CollectedData messages, there is an Identification element inside the payload part
(PayloadEnergyTimeSeries). Elhub will not validate that this identification id unique over time, but it
must be unique within a single CollectedData message. Elhub will always send unique Identification
values in the payload part when it sends metering values (NotifyValidatedDataForBillingEnergy and
PriceVolumeCombinationForReconciliation). It is recommended to use a payload id that is unique
over time. The id of the CollectedData message itself (Identification inside the Header element) must
be unique over time. This will be validated by Elhub.

Elhub Messaging Interface (EMIF) @ Message Identification Page 31

https://en.wikipedia.org/wiki/Universally_unique_identifier

Apen informasjon / Public information

elhub

15 XML contents

15.1 Namespace

Elhub highly recommends to define namespaces in the header of the message and not on the
individual elements in order to reduce message size. If the namespace is put on the individual xml
elements, there is a risk that the message will be rejected due to size constraints (applies to
CollectedData). If it turns out that messages with repeated namespaces results in problems, we will
define a hard requirement regarding the use of namespace prefixes.

Namespace prefixes are to be small like ns1, ns2 etc and urnl, urn2 etc.

15.2 Whitespaces

Elhub highly recommend to send messages without pretty printing (newline and whitespaces). If
pretty printing is used, there is a risk that the message will be rejected due to size constraints
(applies to CollectedData). If it turns out that messages with pretty printing results in problems, we
will define a hard requirement regarding pretty printing.

15.3 Encoding

Messages sent to Elhub must be encoded as utf-8 (Content-Type: text/xml; charset=UTF-8). Data in
responses from Elhub will be similarly encoded. Messages with other encodings will be rejected. If
the wrong encoding is used, the "Other" Fault Code will be returned.

Elhub Messaging Interface (EMIF) @ XML contents Page 32

Apen informasjon / Public information

elhub

16 Elhub Downtime

Elhub will strive to be available, but downtime is unavoidable as maintenance will require some parts
of the system to be down and unexpected failures will also happen. The length of a downtime can
vary, but it is expected that the maximum downtime is 48 hours. A normal downtime will be
considerable lower than this, but it is naturally also theoretically possible that a downtime of more
than 48 hours can occur.

From an Elhub perspective there are some different variations of downtime:

e The outer messaging interface (EMIF) is completely unavailable (server is down)

e EMIF is available, but unable to successfully receive messages

e EMIF is available and can accept messages, but message processing is not running
e EMIF and message processing is running, but calculations/jobs are not running

In addition to this it is also possible to have the case where Elhub is fully operational, but still not
available. This is typically due to network issues where the client cannot reach Elhub. From a client
perspective this kind of downtime can behave the same as the case where EMIF is down. There are
also variations on this theme like where EMIF is down, but the message processing and calculations
are running, but such scenarios will not be discussed in detail.

Below is a description of how the different types of downtime will manifest and what it is expected
the market parties do in these situations. Some of this may have been covered by previous chapters.

16.1 EMIF is Completely Unavailable

When this happens (or there is a network issue preventing you from connecting to Elhub) it will seem
like Elhub does not exist and you will receive a communication exception or similar in your software
(the type of response you get is outside Elhub's control). There is a description of this scenario in
Examples of use.

The consequences for the market parties are that

e It will not be possible to send any messages to Elhub. This includes sending metering values,
market processes, do polling and run "Request Upfront Metering Point Characteristics" (BRS-
NO-611).

o This will result in issues with performing supplier changes as BRS-NO-611 is not available.

e Any process started before EMIF went down may not give a positive Acknowledgement
message within the expected time limit, but once Elhub is up and running the
Acknowledgement message can be polled.

e Processes with time limits may have to be updated if the downtime passed over midnight
like for example changing a BRS-NO-302 to a BRS-NO-402 and changing the date in a BRS-
NO-121 (and also change the corresponding activation from a BRS-NO-122 to a BRS-NO-402)
etc
o This can also result in having to change the start date of change of balance supplier to a

later date depending on how the start date of the contract relate to the time limits in
Elhub

In this scenario you should not try sending the different messages you are to send one by one (i.e. by
first trying message 1, then message 2 etc). This is because you risk that the message that should
have been sent as message 100 is sent as message 1 (EMIF came back online when this message was
tried) and if one of the previous messages is for the same metering point they will be processed by
Elhub in the wrong order as Elhub uses the time the messages were received as the processing order.

Elhub Messaging Interface (EMIF) ® Elhub Downtime Page 33

Apen informasjon / Public information

elhub

You should try sending the first message each time until you get the proper response (but you must
be sure it is not this message that somehow results in a seeming downtime in Elhub). How to set the
message id of the resent messages is described in Examples of use. The resend interval of messages
should be no lower than the minimum polling interval, but in general it should be longer than that
(some form of backoff algorithm could be used to increase the retry interval once it has been
detected the unavailability was just a fluke).

It is expected that all the 5 interfaces in EMIF will be available or unavailable at the same time, but a
more robust solution will handle that some interfaces are operational and others not.

16.2 EMIF is Available, but Unable to Successfully Receive
Messages

Here EMIF will respond to your messages, but will reject them (typically with a http 500 and it is also
expected a Soap Fault marked as a System fault will be returned, but this cannot be guaranteed
depending on what is the issue with EMIF). In this case Elhub will not have received your message
and will not process it. Functionally there will be the same issues as when EMIF is completely
unavailable as no messages will be processed. In this scenario it is more likely that the 5 EMIF
interfaces will behave differently with regard to receiving messages or not than when EMIF is
completely unavailable. This is for example due to the fact that some messages (polling and BRS-NO-
611) are processed synchronously and others are processed asynchronously.

For the interfaces that are failing, the retry mechanism is the same as for the case where EMIF is
completely unavailable (with the addition that we more strongly urge using a backoff algorithm for
the retry interval). If some interface is operational, there should be no resending for its messages.

EMIF is Available and Can Accept Messages, but Message Processing is Not Running

In this scenario Elhub has confirmed the message was received by returning the standard http 200
when the message was sent. As the message processing is down the message will not be processed
now, but it will be processed later. There is no direct indication in EMIF that there is an issue with the
message processing, but it will manifest in empty polling results where you do not get any
acknowledgement messages (neither positive nor negative) for the messages you have sent, no
metering values are sent back to you based on what you sent in and no messages based on what
other market parties have sent in are received. You may still receive messages related to calculations
in Elhub as that part of the system may be operational.

As Elhub has confirmed the message was received by returning the http 200, there is no need for any
resending of messages when you do not get the expected response within the expected time. If you
do try to resend, the message will be rejected with an UUID soap fault indicating the message has
been received previously. If the message id is changed and the same data is sent again, the message
will be processed once the message processing is back online and will then either be rejected
because the metering point is now in a wrong state or just update to the same situation the system is
already in (assuming the new data are identical to what was last sent).

As mentioned it is not immediately obvious Elhub is having an issue with processing messages. This
means it is possible other changes related to a metering point which is waiting for its messages to be
processed occur. If we assume the first message will be processed ok later on, there is no risk in
sending a new message to do the next change as the messages are guaranteed to be processed in
the correct order. The same applies if you have sent in some metering values and you want to send
some more metering values. If the first message will be rejected, the second message were sent in
for a different state than expected and will either be rejected or result in a different state than
expected. This is no different than the standard situation when the system is running as normal, only
that the delay is longer. You either have to have a system where you ask for positive

Elhub Messaging Interface (EMIF) ® Elhub Downtime Page 34

Apen informasjon / Public information

elhub

acknowledgement and wait until the first message is processed before you send the next or you have
a system for rolling back the wrong state.

Metering values and market processes are processed in a different way so it is possible one type of
messages are not being processed, but the other type is being processed.

There is a system in place for processing market process (master data) messages in the order they
were received for a metering point and similarly for metering values, but market process messages
and metering value messages are processed out of order so if you for example create a new metering
point and send in meter values for it at the same time, it is quite possible the metering value
message will be processed first and rejected as the metering point does not exist. The same will be
the case if the channel setup is changed from having a profile settled to an interval settled metering
point. For normal operation the metering values are expected to be sent in at earliest the next day
(except for the rare case when you change from interval settled to profile settled) and then there will
be no issue. However in a downtime scenario it is possible the market process engine is not running,
but the metering value processor is running. If the downtime is long enough the metering values may
be sent before the market process has been processed and in this case the metering values will be
rejected. The only way to resolve this issue is to resend the message contents (with a new message
id) of the metering value message once the market process message has completed (you will detect
the issue by getting a non expected error related to the metering point not existing or not being in
the proper state, but you should not always resend when you get this type of rejection as you must
be sure you were actually in a situation where a market process was also sent to set the metering
point in the correct state and there is no use in resending until the market process message has
completed after the downtime is over). If you always wait for positive acknowledgement of the
master data change before you send metering values (when you do changes where the master data
must be processed first), you avoid any issues other than having to hold the meter value message for
some longer time when the master data processing is not running.

16.3 EMIF and Message Processing is Running, but
Calculations/Jobs are Not Running

For this case all your messages will run as normal with market processes and metering values being
processed as expected. What you will experience however is that the polling result may not include
PPC or FPC values when expected, the basis for imbalance settlement will not be received, reminders
may not be received and similar.

All your standard operations with Elhub can continue as normal, but you may have to hold off other
processes like invoice production until the proper values are made available.

As there are several, independent calculations in Elhub it is possible there is an issue with some, but
not all of them.

Elhub Messaging Interface (EMIF) ® Elhub Downtime Page 35

Apen informasjon / Public information

elhub

17 Appendix A - SoapUl package

To show the main services and interaction patterns we have included a SoapUI package with support
for the Elhub WSDLs. This appendix includes instructions for this SoapUl package.

The intention of this package is for developers and architects to understand the web services and the
integration patterns required to integrate with Elhub.

You may connect your own applications to the mock projects. The returned values are quite fixed
and for the most part do not relate directly to the request sent in. Some timestamps and message ids
will be automatically generated. There is also no memory/state in the SoapUI package so no checks
for duplicate message ids or similar will be done.

17.1 Security

The projects shown below does not have support for WS-Security. In addition to those projects, there
are also duplicate projects with a suffix "WS-Security" that use WSDLs where WS-Security is enabled.

The projects with WS-Security is running on the same ports as the projects without WS-Security. This
means you cannot run both in parallel without doing the proper port changes.

The projects with WS-Security will generate signed messages (the signed request can be seen in the
Raw tab in the request). The signed response is shown directly.

The messages are signed using dummy certificates. The projects supporting security does not do any
security validations and will accept unsigned requests as well.

17.2 Preparations

17.2.1 Prerequisite

e If you haven't installed SoapUl (http://www.soapui.org/) already, begin with downloading it
and installing it.

17.2.2 Importing projects to SoapUl
1. Start by opening SoapUl

Elhub Messaging Interface (EMIF) @ Appendix A - SoapUI package Page 36

http://www.soapui.org/

Apen informasjon / Public information

elhub

Search Forum L1

Soapll
| fe Toe peinep bep
vanss <8

P f
g

g

Prapeny ae
== Frejects

File CAlseroracielZ.

Seapliilog hiplog Jemtylog enealeg wamlog memoey g

2. Go to File -> Import Project
T T]

_;nns Desitop _belp
e SOAP Project ann Search Forum 0o
| -

| treoipeies o 3

[= = 1 g

e
e

= T T

3. Navigate to the soapui-folder in the package and select a project and press "Open".
Page 37

Elhub Messaging Interface (EMIF) @ Appendix A - SoapUI package

Apen informasjon / Public information

elhub

“’ Select soapUI Project File

Lock In: IE soapui

= Elhuh-MalkeiPmcuss-soapui-pmjecl.xml|
E] Elhub-MeteringValues-soapui-projectaxml

B Elhub-PeliMarketProcesses-soapui-project.xm|
B Elhub-PollMeteringValues-soapui-projectxml
[E] Elhub-Query-soapui-projectaxml

File Name: |Elhub-MarketProcesses-soapui-project.xml |

Files of Type: | XML Files (“xmI) ~|

=
Open selected file h

4. Repeat steps 1-3 for all SoauUl-files.

T Sopnsis jE=si =]

[fle ook Desktop Help

vanao X8 SearchForum T
3

(B Projecss
= B Db MyieProcesses
= X MurkeiProcessasSoupSinding

T Mocksenice
& T BhbSosgfouliMociSenice
& (@ Dhob-Metermgyaioes
® T Mateingsessasplingng
T ModkSersice
i T EhubSomfauliMocksenvice
D -
T MuketProcessesPelingSeapBinding
& T MosSenice
& T BhubSaspfaulMocksenice
5 B Dhub-PollMererngsues
T VatermgsuePolgsonindng
X ModkService
T ErwsorpFautMocksenice
= B -Gy
& T QuenSosphinding
& T ModService
® T DhubSospFoubiocidenice

Descripton
file
Presect Roct

Propeties T e ——r.

17.2.3 SoapUl Preferences

1. Goto "File -> Preferences"

Elhub Messaging Interface (EMIF) @ Appendix A - SoapUI package Page 38

Apen informasjon / Public information

SETToE E=jrem
[Ble Toct Deitop ep
NewSOaPPojea amn Search Forum -0
Hew REST Prject — -
Import Preject o 3
ImportPeckes Prejet 5
ImpogtRemete roject
Save Al Prjects cenes
Saue Poferences I
Recent v
6 g
Bt wibhoutsaing Greina
i]
Fregecs
dptin
Clsersiorclelze
Frogenies Soapllilog hmplog jetylog emelog wamicg memeryleq rptiog
n H H n n H H LI
2. Go to "Editor Settings" and make sure that "Abort invalid requests" is not checked.
“ ' SoapUl Preferences @
SoapUI Preferences S
Set global SoapUl settings &\
HTTP Settings
Editor Font: Select Font.
—
S5L Settings XML Line Numbers: [_] Show line numbers in XML editors by default
WSDL Settings Groovy Line Mumbers: [] Show line numbers in Groovy editors by default
UI Settings
Editor Settings Disable auto-resize: [[] Disables automatic resizing of Request editors
Tools Tabbed request view: || Defaults the Request editor to the tabbed layout
WS- Settings
Global Properties Validate Requests: Always validate request messages before they are sent
Global Security Settings Abort on invalid: [Abort invalid requests
WS-A Settings Validate Responses: Always validate response messages
Global Sensitive Information Tokens
Wersion Update Settings
Cancel
17.3 Sample 1 - Elhub-MarketProcesses
Before you start using the requests, you need to start the two mock-services.
Page 39

Elhub Messaging Interface (EMIF) @ Appendix A - SoapUI package

Apen informasjon / Public information

elhub

17.3.1 Start mockservices

1. Expand "Elhub-MarketProcess"-project and right click on "MockService" and select "Start

2. Right click on "ElhubSoapFaultMockService" and select "Start Minimized".

i« _Deion

17.3.2 Calling the mock services:

1. Expand "Elhub-MarketProcesses" -> "MarketProcessSoapBinding" and select any of the
operations. For each of the operations, there are defined three different types of requests:

a. ValidRequest - This is a syntactically correct message.

b. ValidRequest - System/SecurityFault - This is a syntactically correct message, however
the mock service returns a ElhubSoapFault response illustrating that there were some
sort of error related to either security or Elhub. This is a fault scenario.

c. XSDValidationErrorRequest - This is not a syntactically valid request and therefore, the
response returned by the mock service is a ElhubSoapFault of type XSD.

2. Double click on any of the requests and click on the top-left icon (play) to send a request.

Elhub Messaging Interface (EMIF) @ Appendix A - SoapUI package Page 40

Apen informasjon / Public information

ST T]
[Be_zoct porep by J
Rausc <8 Seatch Forum '
=
@ Orub-MarketProcesses g
S e —
o rpzts
CRET)
-
@ Bhub-PoliMeterngVabues
& @ Bhud-Query
I Val
ValdRequest = <
54 Kl V@)
1L — P T — T [P
=
=
— .
of | [X Modsenice || | X emutsorpfauiio.. ||
et SRS
3. The response from the mock service can be viewed on the right pane:
ST =T Tl
[15e_toot_peo e
Search Forum LX)

Bauscx8

[08| @ [

@ Bhob-Quary

T Vaue
Vs

Auth Hesden(0) Attschments) WS-A WS-RM Heades (5) Attachments (0)

ke
hitp/localhost 08D WebService/ et
response bene: 12ms (136 bytes)

o
No Authecaston F S
o | [T moasevics]| [T emuasospraunito.||

Soapllieg Nitplog jttylog emociog witmlog memorylog sciptiog

17.3.3 Endpoints:
There are two mock services:

e MockService:

o Listens on: http://localhost:8080/WebService/services/MarketProcesses

o Returns a syntactically correct response

o Ora ElhubSoapFault of type XSD in case the request is not valid according to the XSD.

e ElhubSoapFaultMockService

o Listens on: http://localhost:8090/WebService/services/MarketProcesses

o Returns a ElhubSoapFault of type Security or System

o Or a ElhubSoapFault of type XSD in case the request is not valid according to the XSD.

Elhub Messaging Interface (EMIF) @ Appendix A - SoapUI package

Page 41

http://localhost:8080/WebService/services/MarketProcesses
http://localhost:8090/WebService/services/MarketProcesses

Apen informasjon / Public information

ellub

17.4 Sample 2 - Elhub-MeteringValues

Before you start using the requests, you need to start the two mock-services.

17.4.1 Start mockservices

1. Expand "Elhub-MeteringValues"-project and right click on "MockService" and select "Start
Minimized".

T Saplisis =T s
| fie_Tocks Deicp ke

Search Farum o 0
cim ;,T [T —
& 8 Dhb-Query
Custom Properties |
2. Right click on "ElhubSoapFaultMockService" and select "Start Minimized".
‘D:I:"‘I’::!unwv Heip. —
BanscXB G- a0

& @ hui-Guer

T Mocsevica |

Sosplliog hmplog jemylog srorlog winmlog memerylog seriptiog

Elhub Messaging Interface (EMIF) @ Appendix A - SoapUI package Page 42

Apen informasjon / Public information

17.4.2 Calling the mock services:

ellub

1. Expand "Elhub-MeteringValues" -> "MeteringValuesSoapBinding" and select the
CollectedData operation. For the operations, there are defined three different types of

requests:

a. ValidRequest - This is a syntactically correct message.
b. ValidRequest - System/SecurityFault - This is a syntactically correct message, however
the mock service returns a ElhubSoapFault response illustrating that there were some

sort of error related to either security or Elhub. This is a fault scenario.

c. XSDValidationErrorRequest - This is not a syntactically valid request and therefore, the

response returned by the mock service is a ElhubSoapFault of type XSD.

2. Double click on any of the requests and click on the top-left icon (play) to send a request.

Fie Jook Desktop Vuj‘
Rauscx8

8716867000030+ uzn2: 16

o —

Auth Hesders @) Attachments 1) WS-A WS-RM Hesders 0) Attachments) SSLInfo

ano

ET0] s

tg e
13

Vae [|
VeidRequert |

10

» ne
n Ngelocalhost 0. J
o e

T vocsenics | | X hsosraaiva.]

Sosplllog Mtpleg jeltylog ermorlog wsrmiog memorylog scriptlog

[eaescxE -0'
_ 2 d B 7
S 1:6
‘8o 5
|# B Emub-polbetesing
|& @ Enub-Query
1
B1g
| s st e v we [E——
“w;::: | |response tme: 89ms (136 bytes) 1:1
o
ures
g acabontd
J ¥ ModSeice || | X ihubsompratite.]
[somttion ey iy i og_omi_mri_sitin ;
Elhub Messaging Interface (EMIF) @ Appendix A - SoapUI package Page 43

Apen informasjon / Public information

elhub

17.4.3 Endpoints:
There are two mock services:

e MockService:

o Listens on: http://localhost:8081/WebService/services/MeteringValues

o Returns a syntactically correct response

o Ora ElhubSoapFault of type XSD in case the request is not valid according to the XSD.
e ElhubSoapFaultMockService

o Listens on: http://localhost:8091/WebService/services/MeteringValues

o Returns a ElhubSoapFault of type Security or System

o Ora ElhubSoapFault of type XSD in case the request is not valid according to the XSD.

17.5 Sample 3 - Elhub-PollMarketProcesses

Before you start using the requests, you need to start the two mock-services.

17.5.1 Start mockservices

1. Expand "Elhub-PollMarketProcess"-project and right click on "MockService" and select "Start
Minimized".
T Seusis == |

| fie_Tocks Deicp ke

2. Right click on "ElhubSoapFaultMockService" and select "Start Minimized".

Elhub Messaging Interface (EMIF) @ Appendix A - SoapUI package Page 44

http://localhost:8081/WebService/services/MeteringValues
http://localhost:8091/WebService/services/MeteringValues

Apen informasjon / Public information

T Sowplisi3
| feToos Destop biep

Search Forum

Clane MockSenice

Add Endpint 1o Intertace

Dun

Impant Mock Operstion

+ S — |+ |
Custom Propertes |
MackService Propert

T MockSrvica

log memerylog seriptiog

Sosplliog hmplog jemylog amertg wirm

17.5.2 Calling the mock services:

1. Expand "Elhub-PollMarketProcesses" -> "MarketProcessesPollingSoapBinding" and select any
of the two operations. For each of the operations, there are defined three different types of
requests:

a. ValidRequest - This is a syntactically correct message. It will either return a some
messages or an empty data set.

b. ValidRequest - System/SecurityFault - This is a syntactically correct message, however
the mock service returns a ElhubSoapFault response illustrating that there were some
sort of error related to either security or Elhub. This is a fault scenario.

c. XSDValidationErrorRequest - This is not a syntactically valid request and therefore, the
response returned by the mock service is a ElhubSoapFault of type XSD.

2. Double click on any of the requests and click on the top-left icon (play) to send a request. _
S‘;f”f‘; ¥ ae

S T] = o o e oA -
2 T . 1
 — = I 0]

Seaplltiog iy o orkog wopt log

Elhub Messaging Interface (EMIF) @ Appendix A - SoapUI package

Page 45

Apen informasjon / Public information

ellub

3. The response from the mock service can be viewed on the right pane:

T Soapli513 o= =

| feToos Destop biep

85

o B

17.5.3 Endpoints:
There are two mock services:

e MockService:

o Listens on: http://localhost:8082/WebService/services/PollIMarketProcesses

o Returns a syntactically correct response

o Ora ElhubSoapFault of type XSD in case the request is not valid according to the XSD.
e ElhubSoapFaultMockService

o Listens on: http://localhost:8092/WebService/services/PolIMarketProcesses

o Returns a ElhubSoapFault of type Security or System

o Or a ElhubSoapFault of type XSD in case the request is not valid according to the XSD.

17.6 Sample 4 - Elhub-PollMeteringValues

Before you start using the requests, you need to start the two mock-services.

17.6.1 Start mockservices

1. Expand "Elhub-PollMeteringValues"-project and right click on "MockService" and select
"Start Minimized".

Elhub Messaging Interface (EMIF) @ Appendix A - SoapUI package Page 46

http://localhost:8082/WebService/services/PollMarketProcesses
http://localhost:8092/WebService/services/PollMarketProcesses

Apen informasjon / Public information

Search Forum -

@ Bhab-Query

Pregenies Sosplliog hmplog jemylog srorlog winmlog memerylog seriptiog

Right click on "ElhubSoapFaultMockService" and select "Start Minimized".
vy - g

Egor
Import Meck Operation

T Mocksrvice

Pregenies Sosplliog hmplog jemylog srorlog winmlog memerylog seriptiog

17.6.2 Calling the mock services:

1.

Expand "Elhub-PollMeteringValues" -> "MeteringValuesPollingSoapBinding" and select any of
the two operations. For each of the operations, there are defined three different types of
requests:

a. ValidRequest - This is a syntactically correct message. It will either return a metering
value message or an empty data set.

b. ValidRequest - System/SecurityFault - This is a syntactically correct message, however
the mock service returns a ElhubSoapFault response illustrating that there were some
sort of error related to either security or Elhub. This is a fault scenario.

c. XSDValidationErrorRequest - This is not a syntactically valid request and therefore, the
response returned by the mock service is a ElhubSoapFault of type XSD.

Elhub Messaging Interface (EMIF) @ Appendix A - SoapUI package Page 47

Apen informasjon / Public information

elhub

2. Double click on any of the requests and click on the top-left icon (play) to send a request.

NTE] T= o T
[T
Ranascx8 Search Forum 'l
— 3
@ Bhb-MatetProceses &
+ @ Bhub-MeterngValies " P~ 4 i % 4 . i v = saminny # sy ey *
& @ Bt Polbrteproceses B : 2 AR T EE srrany i o
& @ Bhub-PoliMeterngalues $ = uE 008 [hpsocmensonm e %+ @
'3 (shuesPolingScapbnding 3 .
edgePoll T2 1
et syt L]
pidutcntororhoquest
&K Mocks e
& X BhubSospFautlockSenice
¥ @ Ohut-Query
¢ —— I0C| 0] 0o}
Auth Hesders @) Atachments) WS-A_WS-RM Headers) Atachments @) SSL ko
11
I X MockSerace || | X Bbsospfaunio.

Soaplillog hitplog jettylog emorkog wemiog memorylog wipt log

3. The response from the mock service can be viewed on the right pane:

~ SoapliS13 ==y~

| e Tocs pesscp pep

- a0

v

@ Eatpol

T ——
& T MeteringlskiePolingiosplinding
e ledgePol

[0 w

& B Dbt Gy

AT Tvfa)
e
»[g
Suth Hesders 1) Aachments 0] WS-5 WS-AM Headers (5} Attachenents (1)
response time: 181ms (136 bytes) 151

-
{tahentscsion Type Ho Authorication | T mocksancce || [T erabsosptaune

] Sovllios_iplog fenyon._srorea wem g memenea. st

17.6.3 Endpoints:
There are two mock services:

e MockService:

o Listens on: http://localhost:8083/WebService/services/PollMeteringValues

o Returns a syntactically correct response

o Ora ElhubSoapFault of type XSD in case the request is not valid according to the XSD.
e ElhubSoapFaultMockService

o Listens on: http://localhost:8093/WebService/services/PollMeteringValues

o Returns a ElhubSoapFault of type Security or System

Elhub Messaging Interface (EMIF) @ Appendix A - SoapUI package Page 48

http://localhost:8083/WebService/services/PollMeteringValues
http://localhost:8093/WebService/services/PollMeteringValues

Apen informasjon / Public information

o Or a ElhubSoapFault of type XSD in case the request is not valid according to the XSD.

17.7 Sample 5 - Elhub-Query

Before you start using the requests, you need to start the two mock-services.

17.7.1 Start mockservices

ellub

1. Expand "Elhub-Query"-project and right click on "MockService" and select "Start Minimized".

T Seaplisid =~
Saarch Fonum @0
2. Right click on "ElhubSoapFaultMockService" and select "Start Minimized".
T Seaplisid =~
vansoxl S ao
e
Page 49

Elhub Messaging Interface (EMIF) @ Appendix A - SoapUI package

Apen informasjon / Public information

ellub

17.7.2 Calling the mock services:

1. Expand "Elhub-Query" -> "QuerySoapBinding" and select any of the operations. For each of
the operations, there are defined three different types of requests:

a. ValidRequest - This is a syntactically correct message.

b. ValidRequest - System/SecurityFault - This is a syntactically correct message, however
the mock service returns a ElhubSoapFault response illustrating that there were some
sort of error related to either security or Elhub. This is a fault scenario.

c. XSDValidationErrorRequest - This is not a syntactically valid request and therefore, the
response returned by the mock service is a ElhubSoapFault of type XSD.

2. Double click on any of the requests and click on the top-left icon (play) to send a request.

T Soaplisis

=y ===
—— — = ap

S d B

e

z'::ﬂmm F L :»é_ il .@_

S =) LL_% Modsercice I HhubSoapauhiMe.. |
3. The response from the mock service can be viewed on the right pane:

T Soaplls13 =S~
—— — = ap

:”“] ik ks At ’

i -]
4+ @

N dushorization

280 L+ — 'd_
e s s aders (5] Attachments [
hitplocatho 3054 ViebSaricel e = et) WA Wil ez € b)

| T ModsSenice 1 EhabSeap autiMe.. |

Seapllliog hitplog jettyleg emorieg wamlog memeryleg seriptlog

Elhub Messaging Interface (EMIF) @ Appendix A - SoapUI package Page 50

Apen informasjon / Public information

ellub

17.7.3 Endpoints:
There are two mock services:

e MockService:

o Listens on: http://localhost:8084/WebService/services/Query

o Returns a syntactically correct response

o Ora ElhubSoapFault of type XSD in case the request is not valid according to the XSD.
e ElhubSoapFaultMockService

o Listens on: http://localhost:8094/WebService/services/Query

o Returns a ElhubSoapFault of type Security or System

o Ora ElhubSoapFault of type XSD in case the request is not valid according to the XSD.

17.8 Sample - WS-Security

All of the SoapUl-projects with WS-Security are started the same way as the ones without. These
instructions apply to all of the WS-Security projects.

17.8.1 Finding the WS-Security header in the request and the response

1. To be able to see the WS-Security header in the Request message you need to change some

properties to SoapUl. Go to File -> Preferences
< ¥7) P e = |

2. Go to Editor Settings and make sure "Always validate request messages before they are sent"
and "Always validate response messages" are selected. Press OK

Elhub Messaging Interface (EMIF) @ Appendix A - SoapUI package Page 51

http://localhost:8084/WebService/services/Query
http://localhost:8094/WebService/services/Query

Apen informasjon / Public information

elhub

&

h:'\ SoapUl Preferences

Ty
»

SoapUI Preferences
Set global SoapUl settings

RIRIEFS= s Editor Font:
Proxy Settings
S5L Settings XML Line Mumbers: [Show line numbers in XML editors by default
WSDL Settings Groovy Line Numbers: [] Show line numbers in Groovy editors by default
UI Settings
Editor Settings Disable auto-resize: [Disables automatic resizing of Request editors
Tools Tabbed request view: || Defaults the Request editor to the tabbed layout
WS-1 Settings
Global Preperties Validate Requests: Always validate request messages before they are sent
Global Security Settings Abort on invalid: [[] Abort invalid requests
WS-A Settings Validate Respanses:] [Always validate response messages
Global Sensitive ion Tokens
Version Update Settings
AlertSite Connector Plugin

3. Start the both mock services, and send a request. Press the "Raw" section on the request
side, and you'll now be able to see the WS-Security header for the request message. For the
response you'll be able to see the WS-Security header for in both the "XML" and "Raw"

= Soaplis20 T T]
Eile Project Suite Case Step Tools Desktop Help
E B @ FJ T3 @ I SerchForam a 9
Empy SOM RIST dmpot SweAl Fom Tral Prefevences Provy Onlne Help
1 VabdRequest s B
Py @O ®+0
§jrost SFEEE o
R | Accept Encoding: g, defite =
s | Content-Type teshmbcharstUTF-8
i]
5 % Mockenvce
3 % RequestEndOfSupply
¥ RequeaStatOfSupply g 7 seminsuen="
tion - wisecurty-i
imcB
<umfequestEndOfSupp)fequest>
vednformation <umtRequestEndOfSupply>
¥ O RequestUpdateMasterDataMeterngPome. <wrnlHeader>
% % UpdeThiPanyAccess
o0
<umCreation> 2015.08-28TOR3547.062-0200</nd-Craation»
<umdPhyscsiSendecénergyPany>
5 v
iSeoditrurgyPuty>
SendestnergyPany>
-
isenderirusg,aty>
et g
v o)
vaoe
ValidRequest ol i z
VahdReques <umlProcestnergContes>
. o
2 5
s S5
g ocaiost 0 WebSen e
<wmlPafosthPEvent> L
e 0 B | oo) atachments wsse)

ieme: 248ms (3531 bytes)

& HhubSospFauto..

Sospiiog tplog jetylog en

17.8.2 Checking the WS-Security integrity response

17.8.2.1 Valid request and response

1. To see the WS-Security checks for the request message going into the mock open the mock
service, and double click on the sample message that was sent in earlier from the mock

Elhub Messaging Interface (EMIF) @ Appendix A - SoapUI package Page 52

Apen informasjon / Public information

elhub

service window. There you'll see request that was received into the mock service. Press the
WSS section below the request to see the WS-Security checks done.

T SeeplisEg =T T
Eile Project Suite Case Step ook [Deskdop Help
E B R @ 3 » 3 Seach Forum m
Gopy SOMP RST bmpor Swedl foum Tl Preences Proy Oriine Help
= ¥
2 projects H
Hem — - MockService 3
2l & T MorketProcessestoapinding PE=O running on port 8D
e — [perstions |
Vel Sy Securt| |
I ‘ | Preperties
-2 RequestatOfSupply MemEn gy =
Pt " 2
= o= MockService N
e ey = UpseteThindpamydccess
5 RequestStetOfSupply
% Requespdae
5 Requeitly
2 UpdaeTh
& %2 BhubSoapFaantocSenice
% RequesSionOfSupply Descri. Prop.. Sart.. Stop. Onfeques. Alefegoes.
© RequestUpdsteCustomerinform, " " - =
% Requeslpdsthlatedoldte [atie & WS-Security procesing remlts
i farasa =]
2 o g e Mg o e biom V1. Subject: ChisElhub, O=Statrets, C=HD Signature Algorthm: SHAZS6wiRS, OID = 1280113451111 Key: 2048 bits moduies 852301 NL1TDAOTERE3%,
abs R
[hescageog] T — E— i}
E Headers () Anachaents (0) | WSS (3)

= Bttt

Soupllliog hplog jettylog enorlog wemicg memenyieg scrgt iog

To see the WS-Security checks for the response message press the WSS section below the
response. There you'll see there is no errors, and that the tokens are all valid.

T == |
Eile Project Suite Case Step ook [Deskdop Help

E B R @ 3 » 3 Search Forun -

frpy 0N WS bmper SweMl foum T Proewnces P Onine e

£l projes
2] =t aroceses - w5 Secury
& T2 MarketProcessestoapinding
5 © RequetEndOfSupply
1} VaidRequest

38 Valdmaauest e e)

<% @

17 ValidReguest-SystemySecuri
XD alidetionErorfecuest

sy Cor
cnl aylontPEvent

¥ Requesind0fSupply
5 RequestStetOfSupply
% Requespdae

umMetervPoirslseiDomainLocaticn
v

<fum MetermgPointUsedDomainlocstion>
<urnd: Balaos R esponsiblelchvedEnesgy Pty
i
<fumd BalanceRiesponsiblelnioivedinesgyPartys
<um:BalanzeSupplerimechedEnerg Party>
.

& 3 ElnubSopFuitbiockSenice
& RequeaindOfSupply

@ 5 Requetn </umi BlanceSuppliemohedEnerg Pty
& % RequetlpdateCusiomednfomm, iz ConmamerinvolvedCustomerPartys
% RemetlpdsteMumDeblide < urn2Giverdlomes Ol fum-Gaeniiames

5 UpdutaThindPartybccens

<urn:Familyblames Hordmarers am:Famiy Name
<umCemmunication

umi
<y Completsblumibers 064 56 1234 /uenZ-Completehiunber
< i

= <fumdAdd
<umZStreethiemes Kirkegt.</umdSirecthame>

. actions22, token-slements e Timestamp: null, vabetec-tokensrue]]
Signature Algorthr: SHA2SGwiehRSA, OID = 12380113548.0 111 Key: Sum BSA public key, 2048 bits medulus: 2695537627816061
o

e
<um2Cityhames Teondhems/um:CayHlames

3
<furmd ConsumelmvolvedCustomeniddress>

P -
</ ReAE R S
g —
. |l — 0}
frcciimy uies .
Endpoint hitp//localbostA... “ LiE
espometene Soms (3535 byt @

[i)] [tsogroaine |

Soupllliog hplog jettylog enorlog wemicg memenyieg scrgt iog

17.8.2.2
1.

Invalid request

If you want to send an expired message you first need to disable WS-Security for the request
message. Double click on the "MarketProcessesSoapBinding" and "Services Endpoints" and

deselect "SignBody" for the "Outgoing WSS".

Elhub Mess:

aging Interface (EMIF) @ Appendix A - SoapUI package Page 53

Apen informasjon / Public information

ellub

L | L

Search Forum -
Tral Prefeences Brony

g

Gniine elp
D T e
wringnponsowt [W @ pyzp@oazm i s eV e =]
T o camepame-Evveiepe i e =

e e TR S O

omta BiaarvhecisiiyTaen LacedlagTymeeruets:/ doce aasis-sves. Setrvm
¥ RequestSh Service Endpeints Tm" 5T 74287 sminezde=h
z Privs it
: S + X sosign s Cansnt oL aas L58ISAtNS Kl gosshammNETD: /W N8 SEQ/2001/10
Request - e InolusiveRanespaces Fre == soapenv™ TMInE: eo=ThETR:
& Updae Edpoint [<dns Cammniea s mabanbin ot
& MockSemice o cabese 54 . “riBiamasuceeshon Rigorirhem esg: /. v, s/ 000/ 0/ amldnt
[=3 TRT—"
@ % Request [r——y < Tranatin
2 Ropeot <aiTranatrm Algori e nnsg: e 5. 62q/ 200110/ -4
$e «/an: Tranatorm o
L33 e
& o = T
[- :
@3
[=] -
T Requesl e -1 ll-
iy P————
eeocess 20
Message 1 ocesing results
< rsusExpires> 201508 280G 08
O, T509-certiicates]| vu-.. VL Subject: Cha Elhub, O Statrett, CaHO ;,mreuy.m SHAZSBwithR
- fer
-,
]| o
[re— L
x Do) |
Auth Hesders 01 Mtachouets 6] WS-A WM 65 e 5P) Headers) Attchents @) <5150 WSG1 150
sponcs e Sans G583 e —
= ElhubscapFaubito
Sowon ks jesikn wrioa vemies rmanewha sokron

2. Copy the soap message from the raw message from an earlier sent in request

[Eile Project Suite Case Step Jools Desktop Help
>)
B B R F B3 8 4 S a @
Empty SOAP REST impot SweAll Forum Tral Preferences Prowy Online Help
=
Pl SMedServiee S
e funning on port 8080
Openations |5 <scupeny:Invelope x=lns PanvE RILE. / /achanas. KB100ep. 013/ S0P/ envelope/ *>
e o Header>
& RequestEndOfSupply e TR AsrSocn yronta TaaotioTopenrbanps//doss easis-open souseas/ao0d
g e
2 a remasinte
2 e Canomloatsastabeshad X3 gorishaminags Ve L seca/ 20
© UpdeThinPyiceess

<da:S1gmaturetatbod Aigocitiom it/ . vi. 6132000/ 09/amdasanzaec

<n:Tranatocmer
<ds:Trans

on Aigezitiam-antp: /.45 010/ 1001/ 10/l -ex-cin
e3aniveNararpaces Prafixiisiet wming aceebrop:/ /e v
=

anstorns>

v e 3

Desci Prop.. Stat.. Stop.. Oreques.. AfteRequ
] Enable & &

)

WS- Securty processing results
> <waaxpires> 2015-08-28T08 08 acton=32
o, Verson: V1. OsStatnett, CoNO ithRSA, OD + 1
fey: Sun RSA public key 2048 bits
™
i Headers 5) SUinks WSSG) M5)
respanse time: Sims (3543 bytes) w2

ElhubSospFsulho...
Sowpiliog Niplog jetylog erorlog wamiog memorylog scrgtiog

3. Pasteitininto the "XML" section

Ele Project Sute Cam Step ook Deklop Help

E B R F Ty & 4 a 9

Someh Fomam
gty SN BST bmpert SweAl fowm Tl Préemnce Pray Onine ey
= 5
o R R H
W b Mabocanes . W.Sacuty -] -H
& rEZS running on port 8D pYcEOLEM wmmmsmmwMMu_ ——HI +@°
& 5 RequestEndOfSupply (5 <soapany:Zavalope =l ST 3 -
T 15 Vet [Sttt
| AF VelidRequest- v
18 XS0ValideionErorRequst P T
& ettt
e : it
b - o Tomia-sam iz et e rutsaassoa o o o
% O RequestUpdateMasterDatabetes
v e retpeme it ntep: 1
5 UpdaeeThinPartyireess = e haqumesimcot appiyr <ran:
& Mok s ==t it Rt s v 883 i
& % RequestEadOfSupply e cru
§ % RequetStertOsupply P o i
b - . S Tranatomm Xigertuhemaasg 5. a2q/ 206810 - e
b oanmpvsmantn o i e ———— e s riumsspaces PruFisAte mainaueetp !
T3 oo - <reeiTeenmterms
L2 e TR Lo
! s P e —
% = RequediniCrsappy L
44 Do Pop. St Stop-. Oobeques. Aoy N e
@ ©° ReguestUpdsteCustomerinfom, = tuERd C JuTid1CA1RecIp eREER FITRARTY S -
b4 b & B _—
1 3 ppanmrcm R
=
W-Securty oo vt
= Expires>2015-08- 28 TOR 28 - action=32.
o 10,150 caricaenl Version V1. Sbject s Ehul, OuSomer, CaHD Spatre o, SASGai, OO
e D
o P ———————.
e e PeinUradboma rLocar ons
" s
ere— P
o Pl
vy
= L - D)
Rt e B) Mchests B W WERM 15 e s Henden D) e @) W@
espance . s 853 by (——T)
2 EhubScapFautivo
Soaplllog haplog jettylog enorlog wem ey memory g lﬂ'lﬂﬂs

Elhub Messaging Interface (EMIF) @ Appendix A - SoapUl package Page 54

Apen informasjon / Public information

ellub

4. Call the mock service with this new request. Open up the mock service, and double click on
the message and select the "WSS" section below the request message. There you'll see a
message stating: "The security semantics of the message have expired"

Saapllis20 T=T&
Eile Project Suite Case Step ook [Dektop Help
E B AR X 4 T 3 @ 4

Empty SOAP BIST bmpot SweAll Forum Tral Preferences Prom . Gnline Help

17.9 Connecting to the SoapUl Package using .Net

This gives some brief information of how to connect to the WSS enabled SoapUl services. This is not a
comprehensive tutorial, neither a recommendation for how to connect to Elhub. It is only intended
to aid in connecting to the WSS enabled SoapUI package using .Net. This uses dummy certificates and
uses more lax security than to use when communicating with Elhub.

Generate a dummy certificate for client use, import it (pfx file) into Windows certificate manager and
set it as ClientCertificate on ClientCredentials:

e openssl genrsa -out privatekey.pem 1024
e openssl req -new -x509 -key privatekey.pem -out publickey.cer -days 365
e openssl pkesl2 -export -out public_privatekey.pfx -inkey privatekey.pem -in publickey.cer

Extract server certificate from the SoapUl keystore, import it to Windows certificate manager and set
it as ServiceCertificate in ClientCredentials with CertificateValidationMode =
X509CertificateValidationMode.None:

e keytool -export -keystore <ref to soapui folder in provided package>\keystore.jks -file
<outfile>.cer -alias "elhub test"

e Password: test

e keytool is part of the Java SDK

When creating the channel, set "elhub" as the Endpointldentity
(Endpointldentity.CreateDnsldentity("elhub")), or define "elhub" in your hosts file and refer to the
computer running the SoapUl package and use "elhub" as dns name when communicating with the
SoapUl package.

Add allowSerializedSigningTokenOnReply="true" and securityHeaderLayout="LaxTimestampLast" to
the bindings.

Elhub Messaging Interface (EMIF) @ Appendix A - SoapUI package Page 55

Apen informasjon / Public information

ellub

18 Questions

Questions related to the interface can be directed to post@elhub.no.

Elhub Messaging Interface (EMIF) @ Questions Page 56

mailto:post@elhub.no

